Sains Malaysiana 54(1)(2026): 19-32
http://doi.org/10.17576/jsm-2026-5501-02
Antagonistic Potential of Rhizosphere Bacteria from Citrus
Plants in East Kalimantan against Lasiodiplodia theobromae
(Potensi Antagonistik Bakteria Rhizosfera daripada Tumbuhan Limau di Kalimantan
Timur terhadapLasiodiplodia theobromae)
UNUN
TRIASIH1, MUTIA ERTI DWIASTUTI1,*,
LISTY ANGGRAENI1, SUHARJONO2, MUHAMAD RIZKI FATONI2 & NENSI AGUSTINA2
1Research Center for Horticultural National Research and Innovation
Agency, Jakarta - Bogor KM 46, Cibinong West Java 16911, Indonesia
2Department of Biology, Faculty of Mathematics and Natural
Sciences, Brawijaya University, Malang 65145,
Indonesia
Diserahkan: 8 Oktober 2024/Diterima: 15 Disember 2025
Abstract
East
Kalimantan is one of the central areas for the development of Siamese oranges (Citrus nobilis) in eastern Indonesia. However, diplodia stem rot disease caused by Lasiodiplodia theobromaecauses low productivity. Alternative
control of those pathogens using indigenous antagonist bacteria is
environmentally friendly. This study aims to analyse the diversity of
rhizosphere bacteria in citrus plants in dry land and swamps from East
Kalimantan and evaluate their potential to inhibit the growth of L. theobromae in vitro. The research consisted of
rhizosphere bacteria isolation, analysis of bacterial diversity, potency assay
of each isolate to inhibit the growth of L. theobromae, and identification of potential bacteria isolates based on 16S rDNA
similarity. The results showed that 17 isolates of non-pathogenic rhizosphere
bacteria, three of which, namely T4, T13, and T14, have the highest potency to
inhibit the growth of L. theobromae. Among
those isolates, the T13 bacterial isolate had the highest potency to inhibit
that pathogenic fungus at logarithmic and stationary growth phases. Isolate T4,
based on 16S rDNA sequence similarity, was identified as Bacillus subtilis,
while T13 and T14 were identified as Pseudomonas aeruginosa.
Keywords: Bacillus subtilis; Citrus nobilis; Lasiodiplodia theobromae; Pseudomonas aeruginosa;
rhizosphere bacteria
Abstrak
Kalimantan Timur merupakan salah satu kawasan pusat pengembangan limau Siam (Citrus nobilis) di wilayah Indonesia Timur. Walau bagaimanapun, penyakit reput batang diplodia yang disebabkan oleh Lasiodiplodia theobromae telah menyebabkan produktiviti yang rendah. Kawalan alternatif terhadap patogen tersebut menggunakan bakteria antagonis asli merupakan pendekatan yang mesra alam. Penyelidikan ini bertujuan untuk menganalisis kepelbagaian bakteria rhizosfera pada tumbuhan sitrus yang terdapat di tanah kering dan paya dari Kalimantan Timur dan menilai potensinya untuk menghalang pertumbuhan L. theobromae secara in vitro. Penyelidikan ini meliputi pemencilan bakteria rhizosfera, analisis kepelbagaian bakteria, ujian potensi setiap pencilan untuk menghalang pertumbuhan L. theobromae dan pengenalpastian pencilan bakteria berpotensi berdasarkan 16S rDNA.
Hasil kajian menunjukkan 17 pencilan bakteria rhizosfera bukan patogen, tiga daripadanya iaitu T4, T13 dan T14 mempunyai potensi yang paling tinggi untuk menghalang pertumbuhan L. theobromae.
Antara pencilan tersebut, bakteria T13 mempunyai potensi tertinggi untuk menghalang kulat patogen pada fasa pertumbuhan logaritma dan pegun. Pencilan T4, berdasarkan persamaan jujukan 16S rDNA dikenal pasti sebagai Bacillus subtilis, manakala T13 dan T14 dikenal pasti sebagai Pseudomonas aeruginosa.
Kata kunci: Bacillus subtilis; bakteria rhizosfera; Citrus nobilis; Lasiodiplodia theobromae; Pseudomonas aeruginosa
RUJUKAN
Agustina, D., Triasih, U., Dwiastuti, M.E. & Wicaksono,
R.C. 2019. Potential of antagonistic fungi in inhibiting the growth of Botryodiplodia theobromae fungi causes stem rot disease in citrus. Jurnal Agonida5(1): 1-6.
Alberto, T.G.C., Araújo, P.C., Fernnanda,
S.T.P. & Domingos, P.C. 2022. Applying antagonist
yeast strains to control mango decay caused by Lasiodiplodia theobromae and Neofusicoccum parvum. Biological Control 170: 104912.
Arrebola, E., Jacobs, R. & Korsten, L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal
pathogens. Journal of Applied Microbiology 108: 386-395.
Bais,
H.P., Weir, T.L., Perry, L.G., Gilroy, S. & Vivanco,
J.M. 2006. The role of root exudates in rhizosphere interactions with plants
and other organisms. Annual Review of Plant Biology 57: 233-266
Badan Pusat Statistik Indonesia
(BPS). 2023. Produksi Tanaman Buah-buahan 2021-2023.
Berendsen, R.L., Pieterse, C.M.J. & Bakker, P.A.H.M.
2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17(8):
478-486.
Brooks, G.F. 2007. Jawetz,
Melnick & Adelberg’s Medical Microbiology. McGraw-Hill Medical.
Chamkhi, I., Omari, N.E., Balahbib, A., Menyiy, N.E., Benali, T. & Ghoulam, C. 2022. Is the rhizosphere a source of applicable
multi-beneficial microorganisms for plant enhancement? Saudi Journal of
Biological Sciences 29(2): 1246-1259.
Che, J., Liu, B., Ruan, C., Tang,
J. & Huang, D. 2015. Biocontrol of Lasiodiplodia theobromae, which causes black spot disease of
harvested wax apple fruit, using a strain of Brevibacillus brevis FJAT-0809-GLX. Crop Protection 67: 178-183.
Chenniappan, C., Narayanasamy, M., Daniel,
G.M., Ramaraj, G.B., Ponnusamy,
P., Sekar, J. & Vaiyapuri,
R.P. 2019. Biocontrol efficiency of native plant growth promoting rhizobacteria
against rhizome rot disease of turmeric. Biological Control 129: 55-64.
Chukeatirote, E., Phueaouan, T. & Piwkam, A. 2018. Screening of rhizosphere soil bacteria for
biocontrol of Lasiodiplodia theobromae. Agriculture and Natural Resources 52(4):
325-329.
Chukeatirote, E., Thirach, P., Tibpromma, S., Asad, S., Priyashantha, A.K.H., Elgorban,
A.M. & Niraphai, K. 2023. Antagonistic potential
of Bacillus amyloliquefaciens and B. velezensis as biocontrol agents against Lasiodiplodia theobromae. New Zealand Journal of Botany 63(5): 1936-1947.
Chukeatirote, E., Niraphai, K., Sardsud, U. & Popluechai, S.
2018. Identification of antagonistic bacteria isolated from Thai fermented
soybean (thua nao) for
biocontrol of Lasiodiplodia theobromae. Acta Phytopathologica et Entomologica Hungarica 53(1): 19-28.
Coleine, C., Delgado-Baquerizo, M., DiRuggiero, J., Guirado, E., Harfouche, A.L., Perez-Fernandez, C., Singh, B.K., Selbmann, L. & Egidi, E.
2024. Dryland microbiomes reveal community adaptations to desertification and
climate change. The ISME Journal 18(1): wrae056.
Compant, S., Duffy, B., Nowak, J., Clément, C. & Barka, E.A. 2005. Use of plant growth-promoting bacteria
for biocontrol of plant diseases: Principles, mechanisms of action, and future
prospects. Applied and Environmental Microbiology 71(9): 4951-4959.
Díaz, H.S., Grossi, C., Zawoznik, M. & Groppa, M.D.
2016. Wheat seeds harbour bacterial endophytes with potential as plant growth
promoters and biocontrol agents of Fusarium graminearum. Microbiological Research 186-187: 37-43.
Dwiastuti, M.E. & Sugiyatno, A. 2018.
The potencial of interstock use to reduce diplodia disease (Botryodiplodia theobromae Path.) on citrus plant. Russian
Journal of Agricultural and Socio-Economic Sciences 78(6): 476-487.
Dwiastuti, M.E., Agustina, D. & Triasih,
U. 2016. Keanekaragaman hayati penyakit busuk batang jeruk (Botryodiplodia theobromae Pat.) di Jawa Timur, Prosiding Seminar Nasional II 2016. Kerjasama Prodi
Pendidikan Biologi FKIP dengan Pusat Studi Lingkungan dan Kependudukan (PSLK) Universitas Muhammadiya Malang. Malang (ID): Universitas Muhammadiya Malang. pp. 94-109.
Ekachai, C., Thanong, P. & Anong, P. 2018. Screening of rhizosphere soil bacteria for
biocontrol of Lasiodiplodia theobromae. Agriculture and Natural Resources 52: 325-329.
Ezrari, S., Mhidra, O., Radouane, N., Tahiri, A., Polizzi, G., Lazraq, A. & Lahlali, R. 2021. Potential role of rhizobacteria isolated
from citrus rhizosphere for biological control of citrus dry root rot. Plants 10(5): 872.
Golam, M.M. & Ilag, L.L. 1999.
Potential for biocontrol of Lasiodiplodia theobromae (Pat.) Griff. & Maubl.
in banana fruits by Trichoderma species. Biological Control 15(3): 235-240.
Gong, A.D., Li, H.P., Yuan, Q.S., Song, X.S., Yao, W., He,
W.J., Zhang, J.B. & Liao, Y.C. 2015. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS ONE 10(2): e0116871.
Janatiningrum, I. & Lestari, Y. 2022. Enzyme production,
antibacterial and antifungal activities of actinobacteria isolated from Ficus deltoidea rhizosphere. Biodiversitas 23(4): 1950-1957.
Kesaulya, H., Virgowati, H.J. & Celvia, T.G.N. 2017. Potency of Bacillus spp. from
potato rhizosphere as active ingredients for biostimulant formulation. Modern Applied Science 11(10): 74-80.
Khadija, G., Nabila, E.A., Salah, E.L., Rachid, L. & Abdessalem, T. 2025. Rhizospheric bacteria: Promising candidates for biocontrol
of apple trunk pathogens. Journal of Phytopathology 173(3): e70083.
Kumar, M., Tiwari, S.K. & Srivastava, S. 2010.
Purification and characterization of enterocin LR/6,
a bacteriocin from Enterococcus faecium LR/6. Applied Biochemistry
and Biotechnology 160(1): 40-49.
Kumawat, K.C., Razdan, N. & Saharan,
K. 2022. Rhizospheric microbiome: Bio-based emerging
strategies for sustainable agriculture development and future perspectives. Microbiological
Research 254: 126901.
Li, X., Leng, J., Yu, L., Bai, H.,
Li, X., Wisniewski, M., Liu, J. & Sui, Y. 2022. Efficacy of the biocontrol
agent Trichoderma hamatum against Lasiodiplodia theobromae on macadamia. Frontiers in Microbiology 13: 994422.
Li, Z., Guo, B., Wan, K., Cong, M., Huang, H. & Ge, Y.
2015. Effects of bacteria-free filtrate from Bacillus megaterium strain
L2 on the mycelium growth and spore germination of Alternaria alternata. Biotechnology and Biotechnological
Equipment 29(6): 1062-1068.
Luo, X., Gong, Y., Xu, F., Wang, S., Tao, Y. & Yang, M.
2023. Soil horizons regulate bacterial community structure and functions in Dabie Mountain of the East China. Scientific Reports 13(1): 15866.
Mardanova, A.M., Fanisovna, H.G., Tafkilevich, L.M., Valer’evna, K.I., Farvazovna, M.L., Gadelevna,
G.A., Mikhailovna, B.L. & Rashidovna,
S.M. 2017. Bacillus subtilis strains with antifungal activity against
the phytopathogenic fungi. Agricultural Sciences 8(1): 1-20.
Méndez-Bravo, A., Herrera-Cornelio, L.C., García-Toscano,
D.F., Kiel-Martínez, A.L., Guevara-Avendaño, E.,
Ramírez-Vázquez, M., Pérez-Bautista, Y., Méndez-Bravo, A. & Reverchon, F. 2023. Beneficial effects of selected rhizospheric and endophytic bacteria, inoculated
individually or in combination, on non-native host plant development. Rhizosphere 26(6): 100693.
Mercado-Blanco, J. & Bakker, P.A.H.M. 2007. Interactions
between plants and beneficial Pseudomonas spp.: Exploiting bacterial
traits for crop protection. Journal of General and Molecular Microbiology 92(4): 367-389.
Mohamed, H. & Saad, A. 2009. The biocontrol of postharvest disease (Botryodiplodia theobromae)
of guava (Psidium guajava L.) by the
application of yeast strains. Postharvest Biology and Technology 53(3):
123-130.
Mohammed, A.F., Oloyede, A.R.
& Odeseye, A.O. 2020. Biological control of
bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere
of tomato plants. Archives of Phytopathology and Plant Protection 53(1–2): 1-16.
Nan, J., Chao, L., Ma, X., Xu, D., Mo, L., Zhang, X., Zhao,
X. & Bao, Y. 2020. Microbial diversity in the rhizosphere soils of three Stipa species from the eastern Inner Mongolian grasslands. Global
Ecology and Conservation 22: e00992.
Nguyen,
H., Lamb, D., Herbohn, J. & Firn,
J. 2014. Designing mixed species tree plantations for the tropics: balancing
ecological attributes of species with landholder preferences in the
Philippines. PLoS One. 9(4): 95267.
Otten,
W., Bailey, D.J. & Gilligan, C.A. 2004. Empirical evidence of spatial
thresholds to control invasion of fungal parasites and saprotrophs. New Phytologist 163(1): 125-132.
Panneerselvam, P., Senapati, A., Kumar, U., Sharma, L., Lepcha, P., Prabhukarthikeyan,
S.R., Jahan, A., Parameshwaran, C., Govindharaj, G.P.P., Lenka, S.
& Nayak, P.K. 2019. Antagonistic and plant-growth promoting novel Bacillus species from long-term organic farming soils from Sikkim, India. 3 Biotech 9: 1-12.
Sajitha, K.L., Maria, F.E.J. & Dev, S.A. 2014. Screening of
bacterial biocontrol against sapstain fungus (Lasiodiplodia theobromae Pat.) of rubberwood (Hevea brasiliensis Muell.Arg.), Research
in Microbiology 165(7): 541-548.
Salvatore, M.M., Andolfi, A. &
Nicoletti, R. 2020. The thin line between pathogenicity and endophytism:
The case of Lasiodiplodia theobromae. Agriculture (Switzerland) 10(10): 1-22.
Santamaria, G., Liao, C., Lindberg, C., Chen, Y., Wang, Z.,
Rhee, K., Pinto, F.R., Yan, J. & Xavier, J.B. 2022. Evolution and
regulation of microbial secondary metabolism. eLife 11: e76119.
Stracquadanio, C., Quiles, J.M., Meca, G. & Cacciola, S.O.
2020. Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in liquid medium. Journal of Fungi 6(4): 263.
Suharjono & Yuliatin, E. 2022. Bacteria
communities of coffee plant rhizosphere and their potency as plant growth
promoting. Biodiversitas Journal of
Biological Diversity 23(11): 5822-5834.
Tamura, K., Stecher, G., Peterson,
D., Filipski, A. & Kumar, S. 2013. MEGA6:
Molecular evolutionary genetics analysis version 6.0. Molecular Biology
& Evolution 30(12): 2725-2729.
Torres, M.J., Perez Brandan, C., Petroselli,
G., Erra-Balsells, R. & Audisio,
M.C. 2016. Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macropomina phaseolina:
SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive
compounds. Microbiological Research 182: 31-39.
Umesha, S., Richardson, P.A., Kong, P. & Hong, C.X. 2008. A
novel indicator plant to test the hypersensitivity of phytopathogenic
bacteria. Journal of Microbiological Methods 72(1): 95-97.
Waghunde, R.R. & Sabalapra, A.N. 2015.
Morphological characterization and antagonistic effect of native Pseudomonas spp. of South Gujarat. Journal of Pure Applied Microbiology 9(Spl. Edn. 1): 615-621.
Whitten, T., Damanik, S.J., Anwar,
J. & Hisyam, N. 2000. The Ecology of
Kalimantan. Vol. 3. Oxford: Oxford University Press.
Xiaoyu, L., Chenxing, T., Ping, Li., Lizhen, L., Jianuan, Z., Huan,
T., & Yanfei, Cai. 2024. Biological control of
avocado branch blight caused by Lasiodiplodia theobromaeusing Bacillus velezensis. Plant Disease 108: 2053-2064.
Xu, J., Zhang, Y., Zhang, P., Trivedi, P., Riera, N., Wang, Y., Liu, X., Fan, G., Tang, J.,
Coletta-Filho H.D., Cubero, J., Deng, X., Ancona, V., Lu, Z., Zhong, B., Roper,
M.C., Capote, N., Catara, V., Pietersen, G., Vernière, C., Al-Sadi, A.M., Li,
L., Yang, F., Xu, X., Wang, J., Yang, H., Jin, T.
& Wang, N. 2018. The structure and function of the global citrus
rhizosphere microbiome. Nature Communications 9: 4894.
Yang, P., Condrich, A., Scranton,
S., Hebner, C., Lu, L. & Ali, M.A. 2024.
Utilizing plant growth promoting rhizobacteria (PGPR) to advance sustainable agriculture. Bacteria 3: 434-451.
Zhou, Y., Yang, L., Wang, J., Guo, L. & Huang, J. 2021.
Synergistic effect between Trichoderma virens and Bacillus velezensis on the control of
tomato bacterial wilt disease. Horticulturae 7(11): 439.
Živković, S., Stojanović, S., Ivanović, Ž., Gavrilović,
V., Popović, T. & Balaž,
J. 2010. Serbian source Colletotrichum acutatum,
Colletotrichum gloeosporioides. Archives of Biological Sciences 62(3): 611-623.
*Pengarang untuk surat-menyurat; email: muti012@brin.go.id